

DOON UNIVERSITY, DEHRADUN

End Semester Examination, First (Odd) Semester, 2016-2017

Department of Chemistry, School of Physical Sciences (SoPS)

Integrated M.Sc. 5 Years (Chemistry)

Course: Inorganic Chemistry-I

Course Code: CYC-101

Time Allowed: 03 Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A,B and C.

SECTION: A

(Marks: $6 Q \times 1 = 6$)

[1] Explain the phenomenon in following images: [1]

- [2] Carbon can form two oxides. Name the two oxides and draw their electronic structures.
- [1] Estimate the % ionic character of H-Cl bond by dipole moment. Given that dipole moment is [3] 3.689×10^{-30} Coulomb meter, bond length is 1.284×10^{-10} (meter) and electronic charge, e =1.602×10⁻¹⁹ Coulomb

Page 1 of 4

[4] Describe and explain the general periodic trend of atomic radius of elements in the Periodic Table. [1][5] Why are silver halides more covalent than sodium halides? [1] [6] Why do Group I carbonates have higher solubility in water than other carbonates? [1] SECTION: B Marks: 12 (a) Explain the reason for difference in boiling points of following sets of molecules: : O₂ -183.0 °C / (i) Boiling Point -195.6 °C N_2 (ii) Boiling Point : Kr -152.9 °C / Ne −245,9 °C : Cl₂ =34.6 °C / -187 °C (iii) Boiling Point F_2 (iv) Boiling Point $: C_4H_{10} - 0.5 \, ^{\circ}C$ / C₃H₈ -42.1 °C (b) Among four different silver halides, solubility of silver fluoride is maximum in water and solubility of silver iodide is minimum in water. Explain the reason. (c) Write a short note on additivity rule. [1] [8] (a) To which type of oxide does each of the following oxides belong? [2] Magnesium oxide Nitrogen monoxide (i) (ii) (iii) Silicon dioxide (iv) Aluminium oxide (b) Describe the type and details of intermolecular forces in the following molecules: Ne, Kr, H₂, O₂, N₂, S₈, C₃H₈, CCl₄, CO₂. [1] [9] (a) Comment on the following and explain with justification: [1] -263 kJ/mol -1922 kJ/mol -405 kJ/mol (b) Explain Fajan's Rule in detail. [2] [10] (a) Iodine is a solid at room temperature whereas F_2 is a gas. Explain the reason. [1] (b) Consider the following data $E(H-H) = 436 \text{ kJ mol}^{-1}$, $E(F-F) = 158 \text{ kJ mol}^{-1}$, $E(H-F) = 158 \text{ kJ mol}^{-1}$ 565 kJ mol^{-1} , E(Ci-Cl) = 242 kJ mol^{-1} , E(H-Cl) = 431 kJ mol^{-1} . Calculate the electronegativity values of H and Cl. Given that electronegativity of Fluorine is 4.0. [2]

[11] (a) Fill the blanks:

[2]

(b) Explain the following phenomena:

[2]

- (i) PCl_3 is polar but BCl_3 is non-polar.
- (ii) Both NBr₃ and NF₃ are polar but their molecules align differently in a non-uniform electrostatic field.
- (c) The following gives the theoretical and experimental values of the lattice enthalpies of two metal bromides. X⁺Br⁻ and Y⁺Br⁻. Explain the reason for a high degree of agreement

Compound	Theoretical	Experimental	
-	lattice enthalpy	lattice enthalpy	
	(kJ mol ⁻¹)	(kJ mol ⁻¹)	
X+Br-(s)	-665	-670	
Y*Br*(s)	-758	-890	

between the theoretical and experimental values in the case of $X^{\dagger}Br^{-}$ (s) but a large discrepancy in the case of $Y^{\dagger}Br^{-}$ (s). Also describe which group in the Periodic Table does metal X possibly belong? [2]

[12] (a) Observe the data described in following tables carefully:

Compound	Lattice enthalpy (kJ mol ⁻¹)			
	Theoretical	Experimental	% deviation	
NaCl	-766.1	-766.4		
NaBr	-730.5	-733.0		
NaI	-685.7	-688.3		
KCI	-692.0	-697.8		
KBr	-666.5	-672.3		
KI	-630.9	-631.8		

Compound	Lattice enthalpy (kJ mol-1)			
	Theoretical	Experimental	% deviation	
AgCl	-833.0	-890.0	dia	
AgBr	-808.0	-877.0		
AgI	-774.0	-867.0		
Zns	-3427.0	-3615.0		

Calculate the value of % deviation for all the compounds described in both the tables and correlate the same on the basis of type of compounds. Also write down your inference. [4]

- (b) Give the shapes and structural formulae of the following molecules. State whether each molecule is polar or non-polar: (i) BCl₃ (ii) NH₃ (iii) CHCl₃ [1]
- (c) How many factors are responsible for the presence of dipole moment in a molecule? Explain with examples. [1]